Table of Contents

[N L A B o Tod U 4T 0172 L0 o A 1
I oY [0 o T 4 :
A 1= 1] 10 IS 7= 1 (=1 o F USSP URPPUR PP 1(
T O 0101011871 00 K= 1
0T (010 FoY 0§ Y=Y (0] 0 NN 23
LT e 101 0] =] 010 0] 1= 010N 31
6. PerformanC@&SCAlADINILY...........uuuueeiiiiiiiiii et e e e e b e e s e e e e e e e st resbar st easraasranerrnnrnerees 33
Ao [o [0] = 1 (0 Y0 £ 3¢
8. Modifying &extendiNngLAMIMPS oo et e e e et e e s e e e s e e e e e e e e e e eaaas 37

L TR 1 (0] £ N 4
10, FULUIEANARNISIOIY. ... ———————— 75
angle_CoefLOMMEANM..........ooiiiiiiieeee e 77
P L0 (=TSN [o707 1T P 80
atom_MOdIfYCOMMEANM.euiiiiiiiiiiiiiieeeee et e aeaaaaaaaeeas 81
P00 A IES1AYA (= 010 0010 T 8]0 PO 82
oo aTo I oT0 Y=y o70] 010 A T- 1 1o NN 84
[oTo]aTo IESYAYA L= ofo 02T A= 10T o RS SRS RSRPRRP 87
DOUNAAINYCOMMAN......coiiiiiiiiiiieieeeeee e e 9C
[oT0 o1 1 01 00= 1870 AR 9
(o1 (5= 101000114 7= 1o RN 9!
(o1 (Y=Y (=I= 1 (0] 041100418 T-1 110 A 92
o1 (Y=Y (=T 010) 0101411 1T-1 0 FRU R 93
delete atOMBOMMIANcoiveeeiiiiii e e e e ettt e e e et a e e s e et e e e e et e e e e e et e e e s asaa e eseabaeessebanseeseransees 93
(o TS IS (ST oo aTo F=Y0 410 T=1 10 A 94
(o IT=Y[SY ot oToT0]a 0] 0 A= 1o T 9¢€
o 1aT=T0 [ir= 1 IRoT0 1<) i o100 010 0= 18] PR 97
dihedral_styleeomMmMaN(...........cooiiiiii i 101
(o ITa TS A TSTT0] 0 o100] A= 1 1o PR 104
AIPOIE COMMAN. ... 10¢
displace_atOMBOMIMAN.uuuuuriuriiriiiiiiirierirerreerererrrreerr————.——————————————————e—eerereerrrerrrrerrrr 105
(o [¥TnaT o oo Tn 0100710 e USSR 10¢
dump_modifyCOMMANG..........oooiiii 111
[STod 0100700218 1F-1 110 PR 11:
1D 010 8 A1 1A= 1 1o R 11
J1E=T0 [0 | 0] e1= o108 011 A 7- 1 1o R 115
LI =YL =101 (07= 0101818 AF-1 110 N 115
LI oT0] A Lo10] 0010 A F- 1 1o FU 11¢€
fIX dragCOMMEANG. ... ceiiiiiiiiiieiiiee ettt e e et e aaaaaaaaaaaaaaaaaaaaeeas 117
LI T=1 [0 Koto] a0 A F=1 010 R 117
DT A1 (0] (o1 =Y2d 0 o0)12 =1 8T F 118
IR L=TYA = 010] 1011 AT 1o N 118
fix_ gran/diagCoOmMmMAaN...........coooiiiiii i ————————————————————— 119
fiX gravity COMMANM.ooiiiiiiiii 12C
LI TaTo [T 1ot a1 0= LT 121
fiX INSEIECOMMANT.ccetiiiiiii et e et e e e et e e e ea b e e e s et e e s eaba e e s eebbn s eeeeabaaeeseranses 127
fiX 1aNQEVINCOMIMEANM uuiiiiiiiiiiiiiiiieeiieiie e eee e e eeeeeeeeeeereeeeeeeeeeeeetaeeateaaaeaateaaaaaataaaeaaaaaaaaaaeees 124
fiX lINEfOrCECOMMEANM.ceveiiieii e et e et e e e et e e e e et e e e e e tb e e s sebaa s essesbaeeseebaneeeeees 126
1D 00 (1A A o700 00 A= 1] o T 126

Table of Contents

LD 0 1SY0 (g0 a1 T=1 110 127
fIX NP COMIMEANM.t ettt et et e st e e et s st e s st e s s s s s st s s s s s sssnnssnnsnnnnees 12¢
fIX NPLCOMMAN.o e 13(
LI VL= 0708] A= 1 7o TR 13:
fiX NVE/QranCOMMANT.......ccoiiiiiiiiiieiiee e 133
1D YA 07000114 7- T 1o R 13
fiX_ OrEeNt/fCCCOMIMEANM.cieete et e e e e e e e e e e e e et e e e e et e e s se b e e s esbaeessenbansns 135
fiX_ planeforCECOMMEANT........cuiiiiieiiiiiiiieeeeeeeeeeeee 138
D 010 1= 11 P 13
fIX PN COMMIANG. ... eeiiiiiiiii ettt et e e et e e et e e et et e e e e aeeaeaeaaeaaaaaaaaaaaaaaaaaeeas 14(
LI (o ot T A= LT A 14
FIX TG, oo, 14
I TSY A 0] 001> 070] 1011 A T=1 10 N 143
fIX SNAKESIYIEceiieeiieeeeeee e 14.
JEDSSY o a1 aTe (oo) 00100 T= 0] o RN PSPPSR 145
fiX_ SPrNA/IGCOMIMEAN.ciiiiiiiiiiiieeeee e e e e e 147
fiX_sSprinQ/SEICOMMANT........eeiiiiiiiiiiiiiieeeeee 148
fiX temMpP/reSCAIEOMMAN. uuuiiiiiiiiiiieiiieiieieeeeeeeereeereeeeeseeeeeeeeeereeeeeeeeeeeereeeteeeaerereeeeeetaeetaeeaaeeeeeaareees 148
LI 10 KoT0)00 AF=Y 010 U 15(
fiX UNIAXIAICOMIMANTeuuiiiiieii e e e e e et e e e et e e e e et e e e s et e e s saba s e s sebaa s eeseebaeeseeranss 151
fiX VISCOUSCOMMIANM.uuiiiiii ittt et e e et e e et e e e e e et e e e e et e e s seaaa e e seebaeeseebbneesearanses 153
fix voluMEe/reSCAIEOMIMANM.uuiiiieii e et e e e e et e e e s et e e e s e e b e e s eaba e e s sebansessesbneeeeens 154
fix wall/granComMMAN...........ooooi i ——————————— 155
fiX Wall/lJ93 COMMANM.......coiiiiiiiiiiiiieeeeeee e 157
fiX Wall/refleCLCOMIMANMA.uuiiieiee et e e e et e e e e e e e s e et e e s saba s e s s aaaa e eseabaaens 158
fiX WIQQIe COMMAN.......ciiiiiiiiiiiie 158
QrOUPCOMMEANM.....coi i ——————- 15¢
improper_coeftomMmMAaN............ooviiiiiiiiiii 160
IMProper_StYIECOMIMEANC........uuuuiitiiiiiiieiie e e aeeeeeaeebeeseesssssssssssssssssssassssssssssssssnsssnnsseesenes 163
1aTod W0 [SYoT0] 0 0] aT= T o R 164
JUMP COMMANT......ciiiiiiieiiee e 16°
kspace MOAINCOMMANT.civuuiiiiieii e e et e e e e e e e e et eeeeat e e e s etba e esesbasessebaneseesrnneeanes 166
S 0T (o SIS AV L1 101010 7= Lo PP 167
P oYY Kot a T 0= 1T o N 16¢
P Tog =X o0) 1010 F=1 1o U 16¢
ToTo IWoto]00T00F=T 0 e PSSR 171
P 1Yo 01010418 =11 17:
MIN_MOdify COMMEANM.oiiiiiii it e e bt abe e bt e st s st eestsssss st s ssssesssassennnnnsnnnsnnes 172
MIN_StYIECOMMANG.......cco i 173
T TaTTaaTP4T 70] a1 0 0F=1 70 U 174
neigh_modifyCOMMANT............ooiiiiii it e bbbt e bt e e b eeaeeseessssssssesssesseeseees 175
[T=TTo]] 0 o] oT) 0 a1 A= 1T NP 177
NEWEONCOMIMIANA.eeveeeeiiet ettt e e ettt e e et et e e e e et e e e s e ebeesse b s eeeetaa s eeseeba e eessabaseessa b sessebansessesnnseesenns 17¢
L) o10] 1011 F=1 170 R 17
[0 R[] 01 Mo70) 1818 F=1 11 PR 18(
OFigIN COMMANM......coi i 18!
pair_COEffCOMMEANM. b ettt a et e s e ssssssssssssesssesseessaessaessessnneeseeseees 181
pair_MOdify COMMEANM.oiii it aa e e et e et e st s s et s st se st s s s ss s s s s s ssssssnssensnnnsennsnnes 191

Table of Contents

pair_StYIECOMMANG........coo o ———— 193
oL 10X o302 A= 1T P 203
PLNE COMIMIANM. ..11tuttitiiiiieiiieeeeetiee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeteetteeeeteeteeeaeaaeaaaaataaaaaataaaaaaeaaaaaaaaaaaaaaaeas 20:
QLT =TToT 0 0 00T 1070 P 204
[£SY=T0 B0 b= 1 1010010 0= 11 PR 20E
(oY= V0 B ASTY 7= 1708 AT A F= 1o A 213
(0 [T0 T oT0) 001 00 F= 07 AP 21°
[T 0] o= L(=ToT0 0101010 = 11T o RPN 216
reset_timestEPOMIMEANG..........ooiiiiiiiit i eee i ee e e ee e e e aaaeaae e aeeaeeeaae e e e ese s esssssssssssssssnsnnnnsnnnenes 217
ESTo1t= 1 (0700 010 A 7= 176 U 21¢
(0Tl 0T0) 0 102 7= 1 1o [21
0 IS A [=Too 0] 00 T= 10T [T 21¢€
LY 070 8 1 017= 1 1o 1R 22,
special_DONABOMMAN..........uuiiiiiiiiiiiiiiieeeee aaaaaaaaaaaaaas 223
temp_MOAIFYCOMMEANT.........uuuiiiiiiiiiiiiii e e eesesssassssesssaessesesesseseseeeeeeeeeeeeeeeeeeeeeeeeeees 224
tEMPEICOMMANT.o et 22"
LEMPEratUIEEOMIMANL ueiiiiiiiiiiiiietieee et eee e eeeseeeeeeeeseeeeeeeeeeeeeeeeeeeeeeaeeeeeaeeeaaaeaaaaaaaaaaeaaaaaaaaaaeaes 226
LU RTST A L0 o70] 0000 F=1 010 PO 22¢
thermo_MOdifYCOMMEANG. e e e ee s esessessessseessssssseseeeeeesseeeseeeeeeeeeees 228
thermo_StylECOMMANM...........oooii e 230
HMESIEPCOMMANT. . ..o 237
UNAUMPCOMMANTL ... annane 2372
WD o0 010> T TR 23!
UL X o1 a1 00 F= 18] o 23
(V= 1A E= 0] [SYoT0] 010 0= L] o AP 235
NL=1 (o Yo YA o0 1017 18] PP 237
V(ST =YY 7= 10 0100418 =110 AU 240

LAMMPS Documentation
(17 July 2006 version of LAMMPS)
LAMMPS stands for Large—scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS is a classical molecular dynamics simulation code designed to run efficiently on parallel
computers. It was developed at Sandia National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely under the terms of the GNU Public
License (GPL).

The primary author of the code_is Steve Plimpton, who can be contacted at sjplimp@sandia.gov. The
LAMMPS WWW Site at www.cs.sandia.gov/~sjplimp/lammps.html has more information about the code anc
its uses.

The LAMMPS documentation is organized into the following sections. If you find errors or omissions in this
manual or have suggestions for useful information to add, please send us an email so we can improve the
LAMMPS documentation.

PDE file of the entire manual, generated by htmldoc

1. Introduction
1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non-features

1.4 Open source distribution
1.5 Acknowledgments and citations
2. Getting started
2.1 What's in the LAMMPS distribution
2.2 Making LAMMPS
2.3 Running LAMMPS
2.4 Command-line options
2.5 Screen output
2.6 Tips for users of previous versions
3. Commands
3.1 LAMMPS input script
3.2 Parsing rules
3.3 Input script structure
3.4 Commands listed by category
3.5 Commands listed alphabetically
4, How-to discussions
4.1 Restarting a simulation
4.2 2d simulations
4.3 CHARMM and AMBER force fields

4.4 Running multiple simulations from one input script

4.5 Parallel tempering
4.6 Granular models

4.7 TIP3P water model
4.8 TIP4P water model
4.9 SPC water model

LAMMPS Documentation 1

http://www.cs.sandia.gov/~sjplimp
mailto:sjplimp@sandia.gov
http://www.cs.sandia.gov/~sjplimp/lammps.html
mailto:sjplimp@sandia.gov
http://www.easysw.com/htmldoc

5. Example problems
6. Performance &scalability

7. Additional tools
8. Madifying &Extending LAMMPS
9. Errors
9.1 Common problems
9.2 Reporting bugs
9.3 Error &warning messages
10. Future and history

10.1 Coming attractions
10.2 Past versions

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

1. Introduction

These sections provide an overview of what LAMMPS can and can't do, describe what it means for
LAMMPS to be an open-source code, and acknowledge the funding and people who have contributed to
LAMMPS over the years.

1.1 What is LAMMPS
1.2 LAMMPS features
1.3 LAMMPS non—features

1.4 Open source distribution
1.5 Acknowledgments and citations

1.1 What is LAMMPS

LAMMPS is a classical molecular dynamics code that models an ensemble of particles in a liquid, solid, or
gaseous state. It can model atomic, polymeric, biological, metallic, or granular systems using a variety of
force fields and boundary conditions.

For examples of LAMMPS simulations, see the Publications page_of the LAMMPS WWW Site.

LAMMPS runs efficiently on single—processor desktop or laptop machines, but is designed for parallel
computers. It will run on any parallel machine that compiles C++ and supparts the MPI message—passing
library. This includes distributed— or shared—memory parallel machines and Beowulf-style clusters.

LAMMPS can model systems with only a few particles up to millions or billions. See this section for
information on LAMMPS performance and scalability, or the Benchmarks section of the LAMMPS WWW
Site.

LAMMPS is a freely—available open—source code, distributed under the termgs of the GNU Public License,
which means you can use or modify the code however you wish. See this section for a brief discussion of th
open-source philosophy.

LAMMPS is designed to be easy to modify or extend with new capabilities, such as new force fields, atom
types, boundary conditions, or diagnostics._See this section for more details.

1. Introduction 2

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www-unix.mcs.anl.gov/mpi
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.gnu.org/copyleft/gpl.html

The current version of LAMMPS is written in C++. Earlier versions were written in F77 and F90. See this
section for more information on different versions. All versions can be downloaded from the LAMMPS
WWW Site.

LAMMPS was originally developed under a US Department of Energy CRADA (Cooperative Research and
Development Agreement) between two DOE labs and 3 companies. It is distributed by Sandia National Lab:
See this section for more information on LAMMPS funding and individuals who have contributed to
LAMMPS.

In the most general sense, LAMMPS integrates Newton's equations of motion for collections of atoms,
molecules, or macroscopic particles that interact via short— or long-range forces with a variety of initial
and/or boundary conditions. For computational efficiency LAMMPS uses neighbor lists to keep track of
nearby particles. The lists are optimized for systems with particles that are repulsive at short distances, so tf
the local density of particles never becomes too large. On parallel machines, LAMMPS uses
spatial-decomposition technigues to partition the simulation domain into small 3d sub—domains, one of whic
is assigned to each processor. Processors communicate and store "ghost" atom information for atoms that
border their sub—domain. LAMMPS is most efficient (in a parallel sense) for systems whose particles fill a 3c
rectangular box with roughly uniform density. Papers with technical details of the algorithms used in
LAMMPS are listed in_this section.

1.2 LAMMPS features

This section highlights LAMMPS features, with pointers to specific commands which give more details. If
LAMMPS doesn't have your favorite interatomic potential, boundary condition, or atom type. see this sectior
which describes how you can add it to LAMMPS.

Kinds of systems LAMMPS can simulate:
(atom style command)

« atomic (e.g. box of Lennard—Jonesium)
 bead-spring polymers

 united—atom polymers or organic molecules

« all-atom polymers, organic molecules, proteins, DNA
* metals

 granular materials

* hybrid systems

Force fields:

(pair _style, bond style, angle style, dihedral style, improper style. kspace style commands)

* pairwise potentials: Lennard—-Jones, Coulombic, Buckingham, Morse, Yukawa, embedded atom
method (EAM, Finnis/Sinclair), frictional granular,

* Debye, soft, DPD, class 2 (COMPASS), tabulated, hybrid

 bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable), hybrid

« angle potentials: harmonic, CHARMM, cosine, cosine/squared, class 2 (COMPASS), hybrid

« dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS,
hybrid

« improper potentials: harmonic, cvff, class 2 (COMPASS), hybrid

1. Introduction 3

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.sandia.gov

* polymer potentials: all-atom, united—atom, bead-spring, breakable

» water potentials: TIP3P, TIP4P, SPC

« long-range Coulombics: Ewald, PPPM (similar to particle—-mesh Ewald)
« CHARMM, AMBER, OPLS force—field compatability

Creation of atoms:

(read_data, lattice, create_atoms, delete_atoms, displace _atoms commands)

* read in atom coords from files

* create atoms on one or more lattices (e.g. grain boundaries)
« delete geometric or logical groups of atoms (e.g. voids)

« displace atoms

Ensembles, constraints, and boundary conditions:
(fix command)

 constant NVE, NVT, NPT, NPH integrators

« thermostatting options for groups and geometric regions of atoms
« pressure control via Nose/Hoover barostatting in 1 to 3 dimensions
« volume rescaling

« altered motion via velocity and force constraints

» harmonic (umbrella) constraint forces

« dragging of atoms to new positions

« independent or coupled rigid body integration

* SHAKE bond and angle constraints

« wall constraints of various kinds

« targeted molecular dynamics (TMD) constraints

* gravity

Integrators:

(run, run_style, temper commands)

« velocity—Verlet integrator

« Brownian dynamics

* energy minimization via conjugate gradient relaxation
« rRESPA hierarchical timestepping

« parallel tempering (replica exchange)

« multiple independent simulations simultaneously

Output:

(dump, restart commands)

* binary restart files

« text dump files of atom coords, velocities, other per—atom attributes
« atom snapshots in native, XYZ, XTC, DCD formats

* per—atom energy, stress, centro—symmetry parameter

1. Introduction

Pre— and post—processing:

Our group has also written and released a separate toolkit called Pizza.py which provides tools for doing
setup, analysis, plotting, and visualization for LAMMPS simulations. Pizza.py is written in Python and is
available for download from the Pizza.py WWW site.

1.3 LAMMPS non—features

LAMMPS is designed to efficiently compute Newton's equations of motion for a system of interacting
particles. Many of the tools needed to pre— and post—process the data for such simulations are not included
the LAMMPS kernel for several reasons:

« the desire to keep LAMMPS simple
« they are not parallel operations

« other codes already do them

« limited development resources

Specifically, LAMMPS itself does not:

e run thru a GUI

* build molecular systems

« assign force—field coefficients automagically

« perform sophisticated analyses of your MD simulation
« visualize your MD simulation

« plot your output data

A few tools for pre— and post—processing tasks are provided as part of the LAMMPS package; they are
described in this section. However, many people use other codes or write their own tools for these tasks.

As noted above, our group has also written and released a separate toolkit called Pizza.py which addresses
some of the listed bullets. It provides tools for doing setup, analysis, plotting, and visualization for LAMMPS
simulations. Pizza.py is written_in Python and is available for download from the Pizza.py WWW site.

LAMMPS requires as input a list of initial atom coordinates and types, molecular topology information, and
force—field coefficients assigned to all atoms and bonds. LAMMPS will not build molecular systems and
assign force—field parameters for you.

For atomic systems LAMMPS provides a create_atoms command which places atoms on solid-state lattice!
(fcc, bec, etc). Assigning small numbers of force field coefficients can be done_via the pair coeff, bond coeff,
angle coeff, etc commands. For molecular systems or more complicated simulation geometries, users typice
use another code as a builder and convert its output to LAMMPS input format, or write their own code to
generate atom coordinate and molecular topology for LAMMPS to read in.

For complicated molecular systems (e.g. a protein), a multitude of topology information and hundreds of
force—field coefficients must typically be specified. We suggest you use a program like CHARMM or
AMBER or other molecular builders to setup such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in this section can assist in this process.

Similarly, LAMMPS creates output files in a simple format. Most users post—process these files with their
own analysis tools or re—format them for input into other programs, including visualization packages. If you

1. Introduction 5

http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.python.org
http://www.cs.sandia.gov/~sjplimp/pizza.html
http://www.scripps.edu/brooks
http://amber.scripps.edu

are convinced you need to compute something on—-the—fly as LAMMPS runs, see this section for a discussic
of how you can use the dump and fix commands to print out data of your choosing. Keep in mind that
complicated computations can slow down the molecular dynamics timestepping, particularly if the
computations are not parallel, so it is often better to leave such analysis to post—processing codes.

A very simple (yet fast) visualizer is provided with the LAMMPS package — see the xmovie_tool in this
section. It creates xyz projection views of atomic coordinates and animates them. We find it very useful for
debugging purposes. For high—quality visualization we recommend the following packages:

» Raster3d
+ RasMol
« VMD

* AtomEye

Other features that LAMMPS does not yet (and may never) support are discussed in this section.

Finally, these are freely—available molecular dynamics codes, most of them parallel, which may be
well-suited to the problems you want to model. They can also be used in conjunction with LAMMPS to
perform complementary modeling tasks.

« CHARMM
« AMBER

* NAMD

* NWCHEM
DL POLY
» Tinker

CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for modeling biological
molecules. CHARMM and AMBER use atom—decomposition (replicated—data) strategies for parallelism;
NAMD and NWCHEM use spatial-decomposition approaches, similar to LAMMPS. Tinker is a serial code.
DL _POLY includes potentials for a variety of biological and non-biological materials; both a replicated—data
and spatial-decomposition version exist.

1.4 Open source distribution

LAMMPS comes with no warranty of any kind. As each source file states in its header, it is a copyrighted
code that is distributed free—of- charge, under the terms of the GNU Public License (GPL). This is often
referred to as open—source distribution —see www.gnu.org or www.opensource.org for more details. The
legal text of the GPL is in the LICENSE file that is included in the LAMMPS distribution.

Here is a summary of what the GPL means for LAMMPS users:

(1) Anyone is free to use, modify, or extend LAMMPS in any way they choose, including for commercial
purposes.

(2) If you distribute a modified version of LAMMPS, it must remain open—-source, meaning you distribute it
under the terms of the GPL. You should clearly annotate such a code as a derivative version of LAMMPS.

(3) If you release any code that includes LAMMPS source code, then it must also be open—sourced, meanir
you distribute it under the terms of the GPL.

1. Introduction 6

http://www.bmsc.washington.edu/raster3d/raster3d.html
http://www.openrasmol.org
http://www.ks.uiuc.edu/Research/vmd
http://164.107.79.177/Archive/Graphics/A
http://www.scripps.edu/brooks
http://amber.scripps.edu
http://www.ks.uiuc.edu/Research/namd/
http://www.emsl.pnl.gov/docs/nwchem/nwchem.html
http://www.cse.clrc.ac.uk/msi/software/DL_POLY
http://dasher.wustl.edu/tinker
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org
http://www.opensource.org

(4) If you give LAMMPS files to someone else, the GPL LICENSE file and source file headers (including the
copyright and GPL notices) should remain part of the code.

In the spirit of an open-source code, these are various ways you can contribute to making LAMMPS better.
You can send email on any of these items.

« Point prospective users to the LAMMPS WWW Site. Mention it in talks or link to it from your
WWW site.

« If you find an error or omission in this manual or on the LAMMPS WWW Site, or have a suggestion
for something to clarify or include, send an email.

« If you find a bug, this section describes how to report it.

« If you publish a paper using LAMMPS results, send the citation (and any cool pictures or movies if
you like) to add to the Publications, Pictures, and Movies pages_of the LAMMPS WWW Site, with
links and attributions back to you.

 Create a new Makefile.machine that can be added to the src/MAKE directory.

 The tools sub—directory of the LAMMPS distribution has various stand-alone codes for pre— and
post—processing of LAMMPS data. More details are given in this section. If you write a new tool that
users will find useful, it can be added to the LAMMPS distribution.

 LAMMPS is designed to be easy to extend with new code for features like potentials, boundary
conditions, diagnostic computations, etc. This section gives details. If you add a feature of general
interest, it can be added to the LAMMPS distribution.

» The Benchmark page of the LAMMPS WWW Site lists LAMMPS performance on various platforms.
The files needed to run the benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be added to the page.

 You can send feedback for the User Comments page_of the LAMMPS WWW Site. It might be added
to the page. No promises.

« Cash. Small denominations, unmarked bills preferred. Paper sack OK. Leave on desk. VISA also
accepted. Chocolate chip cookies encouraged.

1.5 Acknowledgments and citations

LAMMPS development has been funded by the US Department of Energy (DOE), through its CRADA,
LDRD, ASCI, and Genomes—to-Life programs and its OASCR and OBER offices.

Specifically, work on the latest version was funded in part by the US Department of Energy's Genomics:GTL
program (www.doegenomestolife.org) under_the project, "Carbon Sequestration in Synechococcus Sp.: Frol
Molecular Machines to Hierarchical Modeling".

The following papers describe the parallel algorithms used in LAMMPS.

S. J. Plimpton, Fast Parallel Algorithms for Short—-Range Molecular Dynamics, J Comp Phys, 117, 1-19
(1995).

S. J. Plimpton, R. Pollock, M. Stevens, Particle-Mesh Ewald and rRESPA for Parallel Molecular
Dynamics Simulations, in Proc of the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN (March 1997).

If you use LAMMPS results in your published work, please cite the J Comp Phys reference and include a
pointer to the LAMMPS WWW Site (www.cs.sandia.gov/~sjplimp/lammps.html). A paper describing the
latest version of LAMMPS is in the works; when it appears in print, you can check the LAMMPS WWW Site
for a more current citation.

1. Introduction 7

mailto:sjplimp@sandia.gov
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html
mailto:sjplimp@sandia.gov
http://www.doe.gov
http://www.sc.doe.gov/ascr/home.html
http://www.er.doe.gov/production/ober/ober_top.html
http://www.doegenomestolife.org
http://www.genomes2life.org
http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

If you send me information about your publication, I'll be pleased to add it to the Publications page of the
LAMMPS WWW Site. Ditto for a picture or movie for the Pictures or Movies pages.

The primary author of LAMMPS is Steve Plimpton at Sandia National Labs. Others have made significant

contributions to the code:

1. Introduction

Ewald and PPPM
solvers

Roy Pollock
(LLNL)

Mark Stevens

rRESPA &Paul Crozier
(Sandia)

NVT/NPT Mark Stevens

integrators (Sandia)

class 2 force fieldsEric Simon (Cray)

HTFN energy

Todd Plantenga

minimizer (Sandia)

Steve Lustig
maampteal (D0 e

Carpenter (Cray)
CHARMM force |Paul Crozier
fields (Sandia)
2d Ewald/Pppm |.2ul Crozier

(Sandia)
granular force Leo Silbert &Gary
fields and BC Grest (Sandia)
multi-harmonic |Mathias Putz
dihedral potential |(Sandia)
EAM potentials (Sstzﬂzig Foiles

. |Mark Sears

parallel temperlng(Sandia)

Ara Kooser, Jeff
Imp2cfg and Greathouse,

Imp2traj tools

Andrey Kalinichey,
(Sandia)

FFT support for
SGI SCLS (Altix)

Jim Shepherd (Ga
Tech)

targeted moleculg
dynamics (TMD)

Paul Crozier
Sandia), Christian
urisch (Bochum

Univeristy,

Germany)
:‘8;‘;‘9_:2?;65 for paul crozier
Coulombics (Sandia)

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp

1. Introduction

radial distribution

Paul Crozier &Jeff]

)

functions Greathouse

(Sandia)

Morse bond Jeff Greathouse
potential (Sandia)
LAMMPS tool (Sandia)

Keir Novik (Univ
wper - [Colege Londo
LAMMPS tool Varshney (U

Akron)

electric field fix

Christina Payne
(Vanderbilt U)

cylindrical
indenter fix

Ravi Agrawal
(Northwestern U)

compressed dumj
files

Erik Luijten (U
lllinois)

thermodynamics
enhanced by fix
guantities

Aidan Thompson
(Sandia)

uniaxial strain fix

Carsten Svanebor
(Max Planck
Institute)

TIP4P potential
(4-site water)

Ahmed Ismail and
Amalie
Frischknecht
(Sandia)

dissipative particlg
dynamics (DPD)
potentials

Kurt Smith (U Pitt)
and Frank van
Swol (Sandia)

Finnis/Sinclair
EAM

Tim Lau (MIT)

helix dihedral
potential

Naveen
Michaud-Agrawal
(Johns Hopkins U
and Mark Stevens|
(Sandia)

cosine/squared
angle potential

Naveen
Michaud-Agrawal
(Johns Hopkins U

EAM CoAl and
AlCu potentials

Kwang—Reoul Leg
(KIST, Korea)

self spring fix

Naveen
Michaud-Agrawal
(Johns Hopkins U

Naveen
Michaud-Agrawal

radius—of—gyratio ’{Johns Hopkins U

spring fix and Paul Crozier
(Sandia)

lj/smooth pair Craig Maloney

potential (UCSB)

Koenraad Janssens

grain boundary and David Olmstet

orientation fix

(SNL)

Naveen
DCD and XTC Michaud—-Agrawal
dump styles

(Johns Hopkins U

Chris Lorenz and
Mark Stevens
(SNL)

James Fischer
(High Performancy
Technologies, Inc
Vincent Natoli and

breakable bond
guartic potential

D

faster pair hybrid

potential David Richie
(Stone Ridge
Technology)

E;Elg/l;;oupled Rudranarayan

: Mukherjee (RPI)

integrator

Other CRADA partners involved in the design and testing of LAMMPS were

» John Carpenter (Mayo Clinic, formerly at Cray Research)

* Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)
* Steve Lustig (Dupont)

 Jim Belak (LLNL)

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next
Section

2. Getting Started

This section describes how to unpack, make, and run LAMMPS, for both new and experienced users.

2.1 What's in the LAMMPS distribution

2.2 Making LAMMPS

2.3 Running LAMMPS

2.4 Command-line options

2.5 Screen output

2.6 Tips for users of previous versions

2. Getting Started 10

http://www.cs.sandia.gov/~sjplimp/lammps.html

2.1 What's in the LAMMPS distribution

When you download LAMMPS you will need to unzip and untar the downloaded file with the following
commands, after placing the file in an appropriate directory.

gunzip lammps*.tar.gz
tar xvf lammps*.tar

This will create a LAMMPS directory containing two files and several sub—directories:

README(text file

the GNU
LICENSE|General Public
License (GPL)

benchmark
bench

problems
doc documentation

simple test
examples

problems

embedded aton
potentialsimethod (EAM)
potential files

src source files
pre- and

tools post—processing
tools

2.2 Making LAMMPS
Read this first:

Building LAMMPS can be non-trivial. You will likely need to edit a makefile, there are compiler options,
additional libraries can be used (MPI, FFT), etc. Please read this section carefully. If you are not comfortable
with makefiles, or building codes on a Unix platform, or running an MPI job on your machine, please find a
local expert to help you. Many of the emails | get about build and run problems are not really about LAMMP!
- they are peculiar to the user's system, compilers, libraries, etc. Such questions are better answered by a |
expert.

If you have a build problem that you are convinced is a LAMMPS issue (e.g. the compiler complains about &
line of LAMMPS source code), then please send an email. Note that doesn't include linking problems - that'
a question for a local expert!

Also, if you succeed in building LAMMPS on a new kind of machine (which there isn't a similar Makefile for
in the distribution), send it to sjplimp@sandia.gov and we'll include it in future LAMMPS releases.

Building a LAMMPS executable:

The src directory contains the C++ source and header files for LAMMPS. It also contains a top—level
Makefile and a MAKE directory with low—level Makefile.* files for several machines. From within the src

2. Getting Started 11

mailto:sjplimp@sandia.gov

directory, type "make" or "gmake". You should see a list of available choices. If one of those is the machine
and options you want, you can type a command like:

make linux
gmake mac

If you get no errors and an executable like Imp_linux or Imp_mac is produced, you're done; it's your lucky
day. The remainder of this section addressed the following topics: errors that occur when making LAMMPS,
editing a new low-level Makefile.foo, how to make LAMMPS with and without packages, and additional
build tips.

Errors that occur when making LAMMPS:

(2) If the make command breaks immediately with errors that indicate it can't find files with a "*" in their
names, this can be because your machine's make doesn't support wildcard expansion in a makefile. Try gm
instead of make. If that doesn't work, try using a —f switch with your make command to use Makefile.list
which explicitly lists all the needed files, e.g.

make makelist
make —f Makefile.list linux
gmake —f Makefile.list mac

The first "make" command will create a current Makefile.list with all the file names in your src dir. The 2nd
"make" command (make or gmake) will use it to build LAMMPS.

(2) Other errors typically occur because the low-level Makefile isn't setup correctly for your machine. If your
platform is named "foo", you need to create a Makefile.foo in the MAKE directory. Use whatever existing file
is closest to your platform as a starting point. See the next section for more instructions.

Editing a new low-level Makefile.foo:

These are the issues you need to address when editing a low-level Makefile for your machine. With a coupl
exceptions, the only portion of the file you should need to edit is the "System-specific Settings" section.

(1) Change the first line of Makefile.foo to include the word "foo" and whatever other options you set. This is
the line you will see if you just type "make".

(2) Set the paths and flags for your C++ compiler, including optimization flags. You can use g++, the
open-source GNU compiler, which is available on all Unix systems. Vendor compilers often produce faster
code. On boxes with Intel CPUs, | use the free Intel icc compiler, which you can download from Intel's

compiler site.

(3) If you want LAMMPS to run in parallel, you must have an MPI library installed on your platform.
Makefile.foo needs to specify where the mpi.h file (-1 switch) and the libmpi.a library (=L switch) is found.
On my Linux box, | use Argonne's MPICH 1.2 which can be downloaded from the Argonne MPI site. LAM
MPI should also work. If you are running on a big parallel platform, your system people or the vendor shoulc
have already installed a version of MPI, which will be faster than MPICH or LAM, so find out how to link
against it. If you use MPICH or LAM, you will have to configure and build it for your platform. The MPI
configure script should have compiler options to enable you to use the same compiler you are using for the
LAMMPS build, which can avoid problems that may arise when linking LAMMPS to the MPI library.

2. Getting Started 12

http://www.intel.com/software/products/noncom
http://www.intel.com/software/products/noncom
http://www-unix.mcs.anl.gov/mpi

(4) If you just want LAMMPS to run on a single processor, you can use the STUBS library in place of MPI,
since you don't need an MPI library installed on your system. See the Makefile.serial file for how to specify
the —I and —L switches. You will also need to build the STUBS library for your platform before making
LAMMPS itself. From the STUBS dir, type "make" and it will hopefully create a libmpi.a suitable for linking
to LAMMPS. If the build fails, you will need to edit the STUBS/Makefile for your platform.

The file STUBS/mpi.cpp has a CPU timer function MPI_Wtime() that calls gettimeofday() . If your system
doesn't support gettimeofday() , you'll need to insert code to call another timer. Note that the ANSI-standarc
function clock() rolls over after an hour or so, and is therefore insufficient for timing long LAMMPS runs.

(5) If you want to use the particle—particle particle—-mesh (PPPM) option in LAMMPS for long-range
Coulombics, you must have a 1d FFT library installed on your platform. This is specified by a switch of the
form —-DFFT_XXX where XXX = INTEL, DEC, SGI, SCSL, or FFTW. All but the last one are native
vendor—provided libraries. FFTW is a fast, portable library that should work on any platform. You can
download it from www.fftw.org. Use version 2.1.X, not the newer 3.0.X. Building FFTW for my box was as
simple as ./configure; make. Whichever FFT library you have on your platform, you'll need to set the
appropriate —I and —-L switches in Makefile.foo.

If you examine fft3d.c and fft3d.h you'll see it's possible to add other vendor FFT libraries via #ifdef
statements in the appropriate places. If you successfully add a new FFT option, like —DFFT_IBM, please se
me an email; I'd like to add it to LAMMPS.

(6) If you don't plan to use PPPM, you don't need an FFT library. Use a -DFFT_NONE switch in the
CCFLAGS setting of Makefile.foo, or exclude the KSPACE package (see below).

(7) There are a few other —D compiler switches you can set as part of CCFLAGS. The read_data and dump
commands will read/write gzipped files if you compile with -DGZIP. It requires that your Unix support the
"popen" command. Using one of the -DPACK_ARRAY, -DPACK_POINTER, and -DPACK_MEMCPY
options can make for faster parallel FFTs (in the PPPM solver) on some platforms. The —-DPACK_ARRAY
setting is the default.

(8) The DEPFLAGS setting is how the C++ compiler creates a dependency file for each source file. This
speeds re—compilation when source (*.cpp) or header (*.h) files are edited. Some compilers do not support
dependency file creation, or may use a different switch than —-D. GNU g++ works with —D. If your compiler
can't create dependency files (a long list of errors involving *.d files), then you'll need to create a Makefile.fo
patterned after Makefile.tflop, which uses different rules that do not involve dependency files.

That's it. Once you have a correct Makefile.foo and you have pre—built the MPI and FFT libraries it will use,
all you need to do from the src directory is type one of these 2 commands:

make foo
gmake foo

You should get the executable Imp_foo when the build is complete.

How to make LAMMPS with and without packages:

The source code for LAMMPS is structured as a large set of core files that are always used plus additional
packages, which are groups of files that enable a specific set of features. For example, force fields for

molecular systems or granular systems are in packages. You can see the list of packages by typing "make
package". The current list of packages is as follows:

2. Getting Started 13

http://www.fftw.org

class 2 force
fields
dissipative
particle

dpd dynamics
(DPD) force
field

force fields
and boundary|
granular|conditions for
granular
systems
long-range
Ewald and
kspace |particle-mesh
(PPPM)
solvers

force fields fol
moleculemolecular
systems
coupled rigid
body motion
dump atom
xtc snapshots in
XTC format
Any or all of these packages can be included or excluded when LAMMPS is built. The default is to include
only the kspace and molecule packages. You may wish to exclude certain packages if you will never run
certain kinds of simulations. This will produce a smaller executable which in some cases will also run a bit
faster.

class2

poems

Packages are included or excluded by typing "make yes—name" or "make no—name", where "name" is the
name of the package. You can also type "make yes—all" or "make no-all" to include/exclude all optional
packages. These commands work by simply moving files back and forth between the main src directory and
sub—directories with the package name, so that the files are not seen when LAMMPS is built. After you have
included or excluded a package, you must re—-make LAMMPS.

Additional make options exist to help manage LAMMPS files that exist in both the src directory and in
package sub-directories. Typing "make package—update" will overwrite src files with files from the package
directories if the package has been included. Typing "make package—overwrite" will overwrite files in the
package directories with src files. Typing "make package—check" will list differences between src and
package versions of the same files.

To use the poems package you must build LAMMPS with the POEMS library, which computes the
constrained rigid—body motion of articulated (jointed) multibody systems. POEMS was written and is
distributed by Prof Kurt Anderson's group at Rensselaer Polytechnic Institute (RPI). It is included in the
LAMMPS distribution. To build LAMMPS with POEMS, you must use a low-level LAMMPS Makefile that
includes the POEMS directory in its paths. See Makefile.g++.poems as an example. You must also build
POEMS itself as a library before building LAMMPS, so that LAMMPS can link against it. The POEMS
library is built by typing "make" from within the poems directory in the LAMMPS distribution. By default

2. Getting Started 14

this uses Makefile which uses the gcc compiler. If you need to use another compiler (so that the POEMS
library and LAMMPS are consistent), use another poems/Makefile.* or create your own and invoke it as
"make —f Makefile.*".

Building LAMMPS as a library:

LAMMPS can be built as a library, which can then be called from another application or a scripting language
This is done by typing

make makelib
make —f Makefile.lib foo

where foo is the machine name. The first "'make" command will create a current Makefile.lib with all the file
names in your src dir. The 2nd "make" command will use it to build LAMMPS as a library. This requires that
Makefile.foo have a library target (lib) and system-specific settings for ARCHIVE and ARFLAGS. See
Makefile.linux for an example. This will create the file libimp_foo.a which another application can link to.
The library has 3 callable functions:

void lammps_open(int, char **);
void lammps_close();
int lammps_command(char *);

The lammps_open() function is used to initialize LAMMPS, passing in a list of strings as if they were
command-line arguments when LAMMPS is run from the command line. The lammps_close() function is
used to shut down LAMMPS and free all its memory. The lammps_command() function is used to pass a
string to LAMMPS as if it were an input command read from an input script. See the library.cpp file for more
information about the arguments and return values for these 3 functions.

Additional build tips:

(1) Building LAMMPS for multiple platforms.

You can make LAMMPS for multiple platforms from the same src directory. Each target creates its own
object sub—dir called Obj_name where it stores the system—specific *.o files.

(2) Cleaning up.

Typing "make clean" will delete all *.0 object files created when LAMMPS is built.

(3) On some 64-hit machines, compiling with —O3 appears to break the Coulombic tabling option used by tf
pair_style lj/cut/coul/long and lj/charmm/coul/long styles. By default, tabling is used by these styles since it
can offer a 2x speed-up. It can be disabled via the pair_modify command. Alternatively, the associated files
(e.g. pair_lj_cut_coul_long.cpp) can be compiled with —O2, or with the compiler flag —fno—strict-aliasing.
Either of those build changes seems to fix the problem.

(4) Building for a Macintosh.

OS X is BSD Unix, so it already works. See the Makefile.mac file.

(5) Building for MicroSoft Windows.

2. Getting Started 15

I've never done this, but LAMMPS is just standard C++ with MPI and FFT calls. You should be able to use
cygwin to build LAMMPS with a Unix make. Or you should be able to pull all the source files into Visual
C++ (ugh) or some similar development environment and build it. In the src/MAKE/Windows directory are
some notes from users on how they built LAMMPS under Windows, so you can look at their instructions for
tips. Good luck — | can't help you on this one.

2.3 Running LAMMPS

By default, LAMMPS runs by reading commands from stdin; e.g. Imp_linux < in.file. This means you first
create an input script (e.qg. in.file) containing the desired commands. This section describes how input script:
are structured and what commands they contain.

You can test LAMMPS on any of the sample inputs provided in the examples directory. Input scripts are
named in.* and sample outputs are named log.*.name.P where name is a machine and P is the number of
processors it was run on.

Here is how you might run one of the Lennard—Jones tests on a Linux box, using mpirun to launch a parallel
job:

cd src

make linux

cp Imp_linux ../examples/|j

cd ../examplesl/|j

mpirun —np 4 Imp_linux <in.lj.nve

The screen output from LAMMPS is described in the next section. As it runs, LAMMPS also writes a
log.lammps file with the same information. Note that this sequence of commands copied the LAMMPS
executable (Imp_linux) to the directory with the input files. If you don't do this, LAMMPS may look for input
files or create output files in the directory where the executable is, rather than where you run it from.

If LAMMPS encounters errors in the input script or while running a simulation it will print an ERROR
message and stop or a WARNING message and continue. See this section for a discussion of the various
kinds of errors LAMMPS can or can't detect, a list of all ERROR and WARNING messages, and what to do
about them.

LAMMPS can run a problem on any number of processors, including a single processor. In theory you shou
get identical answers on any number of processors and on any machine. In practice, numerical round-off ce
cause slight differences and eventual divergence of molecular dynamics phase space trajectories.

LAMMPS can run as large a problem as will fit in the physical memory of one or more processors. If you run
out of memory, you must run on more processors or setup a smaller problem.

2.4 Command-line options

At run time, LAMMPS recognizes several optional command-line switches which may be used in any order.
For example, Imp_ibm might be launched as follows:

mpirun —np 16 Imp_ibm —var f tmp.out —-log my.log —screen none <in.alloy
These are the command-line options:
—echo style

2. Getting Started 16

Set the style of command echoing. The style can be none or screen or log or both. Depending on the style,
each command read from the input script will be echoed to the screen and/or logdfile. This can be useful to
figure out which line of your script is causing an input error. The default value is log. The echo style can alsc
be set by using the echo command in the input script itself.

—partition 8x2 45 ...

Invoke LAMMPS in multi—partition mode. When LAMMPS is run on P processors and this switch is not
used, LAMMPS runs in one partition, i.e. all P processors run a single simulation. If this switch is used, the F
processors are split into separate partitions and each partition runs its own simulation. The arguments to the
switch specify the number of processors in each partition. Arguments of the form MxN mean M partitions,
each with N processors. Arguments of the form N mean a single partition with N processors. The sum of
processors in all partitions must equal P. Thus the command "—partition 8x2 4 5" has 10 partitions and runs
a total of 25 processors.

The input script specifies what simulation is run on which partition; see the variable and next commands.
Simulations running on different partitions can also communicate with each other;_see the temper command

—in file

Specify a file to use as an input script. This is an optional switch when running LAMMPS in one—partition
mode. If it is not specified, LAMMPS reads its input script from stdin — e.g. Imp_linux < in.run. This is a
required switch when running LAMMPS in multi-partition mode, since multiple processors cannot all read
from stdin.

-log file

Specify a log file for LAMMPS to write status information to. In one—partition mode, if the switch is not
used, LAMMPS writes to the file log.lammps. If this switch is used, LAMMPS writes to the specified file. In
multi—partition mode, if the switch is not used, a log.lammps file is created with hi-level status information.
Each partition also writes to a log.lammps.N file where N is the partition ID. If the switch is specified in
multi—partition mode, the hi-level logfile is named "file" and each patrtition also logs information to a file.N.
For both one—partition and multi—partition mode, if the specified file is "none", then no log files are created.
Using a log command in the input script will override this setting.

—screen file

Specify a file for LAMMPS to write it's screen information to. In one—partition mode, if the switch is not
used, LAMMPS writes to the screen. If this switch is used, LAMMPS writes to the specified file instead and
you will see no screen output. In multi—partition mode, if the switch is not used, hi-level status information is
written to the screen. Each partition also writes to a screen.N file where N is the partition ID. If the switch is
specified in multi—partition mode, the hi-level screen dump is hamed "file" and each partition also writes
screen information to a file.N. For both one—partition and multi—partition mode, if the specified file is "none",
then no screen output is performed.

—-var X value

Specify a variable that will be defined for substitution purposes when the input script is read. X should be a
single lower—case character from 'a’ to 'z'. The value can be any string. Using this command-line option is
equivalent to putting the line "variable X index value" at the beginning of the input script. See the variable
command for more information.

2. Getting Started 17

2.5 LAMMPS screen output

As LAMMPS reads an input script, it prints information to both the screen and a log file about significant
actions it takes to setup a simulation. When the simulation is ready to begin, LAMMPS performs various
initializations and prints the amount of memory (in MBytes per processor) that the simulation requires. It alsc
prints details of the initial thermodynamic state of the system. During the run itself, thermodynamic
information is printed periodically, every few timesteps. When the run concludes, LAMMPS prints the final
thermodynamic state and a total run time for the simulation. It then appends statistics about the CPU time a
storage requirements for the simulation. An example set of statistics is shown here:

Loop time of 49.002 on 2 procs for 2004 atoms

Pair time (%) = 35.0495 (71.5267)
Bond time (%) = 0.092046 (0.187841)
Kspce time (%) = 6.42073 (13.103)
Neigh time (%) = 2.73485 (5.5811)
Comm time (%) = 1.50291 (3.06703)
Outpt time (%) = 0.013799 (0.0281601)
Other time (%) = 2.13669 (4.36041)

Nlocal: 1002 ave, 1015 max, 989 min
Histogram: 1000000001

Nghost: 8720 ave, 8724 max, 8716 min
Histogram: 1000000001

Neighs: 354141 ave, 361422 max, 346860 min
Histogram: 1000000001

Total # of neighbors = 708282

Ave neighs/atom = 353.434

Ave special neighs/atom = 2.34032
Number of reneighborings = 42
Dangerous reneighborings = 2

The first section gives the breakdown of the CPU run time (in seconds) into major categories. The second
section lists the number of owned atoms (Nlocal), ghost atoms (Nghost), and pair-wise neighbors stored pe
processor. The max and min values give the spread of these values across processors with a 10-bin histog
showing the distribution. The total number of histogram counts is equal to the number of processors.

The last section gives aggregate statistics for pair-wise neighbors and special neighbors that LAMMPS kee
track of (see the special_bonds command). The number of times neighbor lists were rebuilt during the run is
given as well as the number of potentially "dangerous" rebuilds. If atom movement triggered neighbor list
rebuilding (see the neigh_modify command), then dangerous reneighborings are those that were triggered c
the first timestep atom movement was checked for. If this count is non-zero you may wish to reduce the del
factor to insure no force interactions are missed by atoms moving beyond the neighbor skin distance before
rebuild takes place.

If an energy minimization was performed, additional information is printed that includes the energy change
and convergence criteria.

2. Getting Started 18

2.6 Tips for users of previous LAMMPS versions

LAMMPS 2003 is a complete C++ rewrite of LAMMPS 2001, which was written in F90. Features of earlier
versions of LAMMPS are listed in this section. The FO0 and F77 versions (2001 and 99) are also freely
distributed as open-source codes; check the LAMMPS WWW Site for distribution information if you prefer
those versions. The 99 and 2001 versions are no longer under active development; they do not have all the
features of LAMMPS 2003.

If you are a previous user of LAMMPS 2001, these are the most significant changes you will notice in
LAMMPS 2003:

(1) The names and arguments of many input script commands have changed. All commands are now a sing
word (e.g. read_data instead of read data).

(2) All the functionality of LAMMPS 2001 is included in LAMMPS 2003, but you may need to specify the
relevant commands in different ways.

(3) The format of the data file can be streamlined for some problems. See the read data command for detai
The data file section "Nonbond Coeff* has been renamed to "Pair Coeff" in LAMMPS 2003.

(4) Binary restart files written by LAMMPS 2001 cannot be read by LAMMPS 2003 with a read_ restart
command. This is because they were output by F90 which writes in a different binary format than C or C++
writes or reads. Use the restart2data tool provided with LAMMPS 2001 to convert the 2001 restart file to a
text data file. Then edit the data file as necessary before using the LAMMPS 2003 read_data command to r
itin.

(5) There are numerous small numerical changes in LAMMPS 2003 that mean you will not get identical
answers when comparing to a 2001 run. However, your initial thermodynamic energy and MD trajectory
should be close if you have setup the problem for both codes the same.

Previous Section — LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

3. Commands

This section describes how a LAMMPS input script is formatted and what commands are used to define a
LAMMPS simulation.

3.1 LAMMPS input script

3.2 Parsing rules

3.3 Input script structure

3.4 Commands listed by category
3.5 Commands listed alphabetically

3.1 LAMMPS input script
LAMMPS executes by reading commands from a input script (text file), one line at a time. When the input

script ends, LAMMPS exits. Each command causes LAMMPS to take some action. It may set an internal
variable, read in a file, or run a simulation. Most commands have default settings, which means you only ne

2. Getting Started 19

http://www.cs.sandia.gov/~sjplimp/lammps.html
http://www.cs.sandia.gov/~sjplimp/lammps.html

to use the command if you wish to change the default.

In many cases, the ordering of commands in an input script is not important. However the following rules
apply:

(1) LAMMPS does not read your entire input script and then perform a simulation with all the settings.
Rather, the input script is read one line at a time and each command takes effect when it is read. Thus this
sequence of commands:

timestep 0.5
run 100
run 100

does something different than this sequence:

run 100
timestep 0.5
run 100

In the first case, the specified timestep (0.5 fmsec) is used for two simulations of 100 timesteps each. In the
2nd case, the default timestep (1.0 fmsec) is used for the 1st 100 step simulation and a 0.5 fmsec timestep |
used for the 2nd one.

(2) Some commands are only valid when they follow other commands. For example you cannot set the
temperature of a group of atoms until atoms have been defined and a group command is used to define whi
atoms belong to the group.

(3) Sometimes command B will use values that can be set by command A. This means command A must
precede command B in the input script if it is to have the desired effect. For example, the read_data comma
initializes the system by setting up the simulation box and assigning atoms to processors. If default values a
not desired, the processors and boundary commands need to be used before read_data to tell LAMMPS ho
to map processors to the simulation box.

Many input script errors are detected by LAMMPS and an ERROR or WARNING message is_printed. This
section gives more information on what errors mean. The documentation for each command lists restriction:s
on how the command can be used.

3.2 Parsing rules

Each non-blank line in the input script is treated as a command. LAMMPS commands are case sensitive.
Command names are lower—case, as are specified command arguments. Upper case letters may be used il
names or user—chosen ID strings.

Here is how each line in the input script is parsed by LAMMPS:

(1) If the line ends with a ""character (with no trailing whitespace), the command is assumed to continue on
the next line. The next line is concatenated to the previous line by removing the "character and newline. Th

allows long commands to be continued across two or more lines.

(2) All characters from the first "#" character onward are treated as comment and discarded.

3. Commands 20

(3) The line is searched repeatedly for $ characters. If the character following the $ is "a" to "z", the
two—characters sequence (e.g. $x) is replaced with the corresponding variable text. See the variable comm:e
for details.

(4) The line is broken into "words" separated by whitespace (tabs, spaces). Note that words can thus contail
letters, digits, underscores, or punctuation characters.

(5) The first word is the command name. All successive words in the line are arguments.

(6) Text with spaces can be enclosed in double quotes so it will be treated as a single argument. See the du
modify or_fix print commands for examples. A '# or '$' charater in text between double quotes will also not b
treated as a comment or substituted for as a variable.

3.3 Input script structure

This section describes the structure of a typical LAMMPS input script. The "examples" directory in the
LAMMPS distribution contains many sample input scripts; the corresponding problems are discussed in this
section, and animated on the LAMMPS WWW Site.

A LAMMPS input script typically has 4 parts:

1. Initialization

2. Atom definition

3. Settings

4. Run a simulation
The last 2 parts can be repeated as many times as desired. l.e. run a simulation, change some settings, run
some more, etc. Each of the 4 parts is now described in more detail. Remember that almost all the comman
need only be used if a non—-default value is desired.
(1) Initialization

Set parameters that need to be defined before atoms are created or read—in from a file.

The relevant commands are units. dimension, newton, processors, boundary, atom_style, atom_modify.

If force—field parameters appear in the files that will be read, these commands tell LAMMPS what kinds of
force fields are being used: pair_style, bond_style, angle _style. dihedral_style, improper_style.

(2) Atom definition

There are 3 ways to define atoms in LAMMPS. Read them in from a data or restart file via the read _data or
read_restart commands. These files can contain molecular topology information. Or create atoms on a lattic
(with no molecular topology), using these commands: lattice, qQrient, origin, region, create_box, create atom
The entire set of atoms can be duplicated to make a larger simulation using the replicate command.

(3) Settings

Once atoms and molecular topology are defined, a variety of settings can be specified: force field coefficient
simulation parameters, output options, etc.

3. Commands 21

http://www.cs.sandia.gov/~sjplimp/lammps.html

Force field coefficients are set by these commands (they can also be set in the read=in files): pair_coeff,
bond_coeff, angle_coeff, dihedral_coeff, improper_coeff. kspace _style, dielectric. special bonds.

Various simulation parameters are set by these commands: temperature, temp_maodify, neighbor,
neigh_maodify, group,. timestep, reset_timestep, run_style, min _style, min_modify.

Fixes impose a variety of boundary conditions, time integration, and diagnostic options. The fix command
comes in many flavors.

Output options are set by these commands: thermo, dump, restart.
(4) Run a simulation
A molecular dynamics simulation is run using_the run command. Energy minimizationn (molecular statics) is

performed using the minimize command. A parallel tempering (replica—exchange) simulation can be run
using the temper command.

3.4 Commands listed by category

This section lists all LAMMPS commands, grouped by category. The next section lists the same commands
alphabetically. Note that some style options for some commands are part of specific LAMMPS packages,
which means they cannot be used unless the package was included when LAMMPS was built. Not all
packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the
command's documentation.

Initialization:

atom_modify, atom_style. boundary, dimension. newton, processors, units

Atom definition:

create_atoms, create box, lattice, orient. origin, read_data. read _restart, region, replicate

Force fields:

angle_coeff, angle_style, bond_coeff, bond_style. dielectric, dihedral _coeff, dihedral_style, improper_coeff,
improper_style, kspace_modify, kspace_style, pair_coeff. pair_modify, pair_style, pair_write, special bonds

Settings:

dipole, group. mass, min_modify, min_style, neigh_modify, neighbor, reset_timestep. run_style, set,
temp_modify, temperature, timestep. velocity

Fixes:

fix, fix_modify, unfix

Output:

dump, dump_modify, restart, thermo, thermo_modify., thermo_ style, undump. write_restart

3. Commands 22

Actions:

delete_atoms, delete_bonds. displace_atoms, minimize, run, temper

Miscellaneous:

cd, clear, echo, include, jump. label, log. next, print, variable

3.5 Individual commands

This section lists all LAMMPS commands alphabetically. The previous section lists the same commands,
grouped by category. Note that some style options for some commands are part of specific LAMMPS
packages, which means they cannot be used unless the package was included when LAMMPS was built. N
all packages are included in a default LAMMPS build. These dependencies are listed as Restrictions in the
command's documentation.

angle_coeff |angle_style [atom_maodify |atom_style |bond_coeff |bond_style
boundary cd clear create atomscreate box [delete atoms
delete_bonds |dielectric dihedral_coeffdihedral_styl@imension dipole
displace_atonjdump dump_modify[echo fix fix_modify
rou improper_coefimproper_styl@énclude jump kspace_modif
kspace_style (label lattice log mass minimize
min_modify [min_style neigh_modify [neighbor newton next
orient origin pair_coeff pair_modify |pair_style pair_write
print processors |read_data [read_restart [region replicate
reset_timesteprestart run run_style set special_bonds
temp_modify |temper temperature [thermo thermo_modifythermo_style
timestep undump unfix units variable velocity
write_restart

Previous Section - LAMMPS WWW Site — LAMMPS Documentation — LAMMPS Commands — Next

Section

4. How-to discussions

The following sections describe what commands can be used to perform certain kinds of LAMMPS
simulations.

4.1 Restarting a simulation
4.2 2d simulations

4.3 CHARMM and AMBER force fields

4.4 Running multiple simulations from one input script

4.5 Parallel tempering
4.6_Granular models

4.7 TIP3P water model
4.8 TIPAP water model
4.9 SPC water model

3. Commands 23

http://www.cs.sandia.gov/~sjplimp/lammps.html

The example input scripts included in the LAMMPS distribution and highlighted in this section also show
how to setup and run various kinds of problems.

4.1 Restarting a simulation

There are 3 ways to continue a long LAMMPS simulation. Multiple run commands can be used in the same

input script. Each run will continue from where the previous run left off. Or binary restart files can be saved t
disk using the restart command. At a later time, these binary files can be read via a read_restart command i
new script. Or they can be converted to text data files and read by a read data command in a new script. Tt
section discusses the restart2data tool that is used to perform the conversion.

Here we give examples of 2 scripts that read either a binary restart file or a converted data file and then isst
new run command to continue where the previous run left off. They illustrate what settings must be made in
the new script. Details are discussed in the documentation for the read restart and read_data commands.

Look at the in.chain input script provided in the bench directory of the LAMMPS distribution to see the
original script that these 2 scripts are based on. If that script had the line

restart 50 tmp.restart
added to it, it would produce 2 binary restart files (tmp.restart.50 and tmp.restart.100) as it ran.

This script could be used to read the 1st restart file and re—run the last 50 timesteps:
read_restart tmp.restart.50

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

run 50

Note that the following commands do not need to be repeated because their settings are included in the res
file: units, atom_style, special_bonds, pair_style, bond_style. However these commands do need to be usec
since their settings are not in the restart file: neighbor, fix, timestep.

If you actually use this script to perform a restarted run, you will notice that the thermodynamic data match &
step 50 (if you also put a "thermo 50" command in the original script), but do not match at step 100. This is
because the fix langevin command uses random numbers in a way that does not allow for perfect restarts.

As an alternate approach, the restart file could be converted to a data file using this tool:
restart2data tmp.restart.50 tmp.restart.data
Then, this script could be used to re—run the last 50 steps:

units lj
atom_style bond

4. How-to discussions 24

pair_style lj/cut 1.12
pair_modify shift yes
bond_style fene
special_bonds 0.01.01.0

read_data tmp.restart.data

neighbor 0.4 bin
neigh_modify every 1 delay 1

fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297

timestep 0.012

reset_timestep 50
run 50

Note that nearly all the settings specified in the original in.chain script must be repeated, except the pair_co
and bond_coeff commands since the new data file lists the force field coefficients. Also, the reset timestep
command is used to tell LAMMPS the current timestep. This value is stored in restart files, but not in data
files.

4.2 2d simulations
Use the dimension command to specify a 2d simulation.
Make the simulation box periodic in z via the boundary command. This is the default.

If using the_create box command to define a simulation box, set the z dimensions narrow, but finite, so that t
create_atoms command will tile the 3d simulation box with a single z plane of atoms - e.g.

create box 1 -10 10 -10 10 -0.25 0.25

If using the read data command to read in a file of atom coordinates, set the "zlo zhi" values to be finite but
narrow, similar to the create_box command settings just described. For each atom in the file, assign a z
coordinate so it falls inside the z-boundaries of the box - e.g. 0.0.

Use the fix enforce2d command as the last defined fix to insure that the z—components of velocities and forc
are zeroed out every timestep. The reason to make it the last fix is so that any forces induced by other fixes
will be zeroed out.

Many of the example input scripts included in the LAMMPS distribution are for